学習塾の口コミ比較サイト「塾探しの窓口」が運営。初めて塾を探されている保護者に向けて、塾を探す上での基礎知識や塾選びを成功に導くためのポイント等を、わかりやすくお届けします。
【中1数学】中1で習う単元まとめ | 勉強のコツをご紹介

中学生になって、算数から数学に変わったことでとまどう人もいるのではないでしょうか。
中1は、数学の基礎を学ぶ学年です。中1数学で学ぶ内容とおさえておきたいポイントについて解説します。
目次
中1で習う数学の概要

中1では、小学校までの算数が「数学」になります。高校まで続く数学の始まりです。
算数が数学になると、扱う情報の抽象度が上がります。算数では、買い物やおやつの分け方など日常の具体的な計算を学んできました。一方数学になると「x、y」などの記号を使い机上の論理を学ぶようになります。
また数学では単に答えがでれば良しとはされず、答えに至るまでの考え方(いわゆる「論理的思考力」)も重視されるようになります。数学は「答えは○○となる、なぜなら△△という理由だから」と明解に説明できる力も必要な教科です。
中1の数学は新しい内容の学習内容と、「具体から抽象へ」「解答から思考過程へ」という教科の性質そのものの変化を同時に習得する必要があります。
教科の性質変化についていけないと「小学校までは算数が得意だったのに、中学に入った途端数学が苦手になった」となりかねません。
学習内容をしっかり理解するのと同時に、抽象概念の扱い方や論理的に考える力も意識して学んでいきましょう。
勉強の注意点

中1の数学を勉強する際は、「つまりどういうことか」と自問する意識を持ち続けましょう。
中1数学の関門である「情報の抽象化」は、中1の最初からいきなり始まります。また学習が進むにつれ、抽象度は徐々に上がっていきます。
学習内容を本質的に理解していないと、自覚のない「わからない」がどんどんつみ重なってしまいます。
理解不足を自覚したころには手遅れになる恐れもあるため、単元一つひとつを「つまりどういうことか」と考えながら学び、深く理解するよう心がけてください。
たとえば中1数学の2番目に出てくる「文字の式」、次いで3番目に登場する「方程式」が良い例です。以下の問題例を見比べてください。
「文字の式」の計算問題(例) | 方程式の計算問題(例) |
問、次の計算をしなさい。 (6x+5)+(7x−13) | 問、次の計算をしなさい。 6(1-x)=-x+11 |
ちなみに正解は以下のとおりです。
・文字の式 13x-8
・方程式 x=-1
文字の式は同じ文字の項目や数字をまとめ、もっともシンプルな形にする計算です。一方方程式は(左辺)=(右辺)を成立させるxの値を求める計算です。
この本質を押さえず、「文字の式は解答に=がない」「方程式はx=〇の形で答える」と形式的に進めていると、次以降の単元も正しく理解できなくなります。
中1数学では「つまりどういうことか」と自問しながら、本質から理解する姿勢を大切にしましょう。
正の数・負の数
(1)数の大小・数直線と絶対値
・数の大小
小学校では0より大きい数を学びました。数直線で右側に表される0より大きい数を「正の数」、数直線の0から見て左側にある0より小さい数を「負の数」といいます。
正の数は「+150」のように「プラス」をつけて表すこともありますが、省略できます。負の数は「-150」のように、数字の前に「-(マイナス)」記号をつけます。この-は省略できません。
数の大小は不等号(<,>)で表します。
(例)-150<1.5
・数直線と絶対値
数直線の右側にある数ほど大きく、左側にある数ほど小さくなります。見た目の数字が大きくても、この原則は変わりません。小数や分数でも同じです。
「見た目の数字」を絶対値といいます。絶対値は「数直線上の0からの距離」です。150も-150も、絶対値は150です。
(2)正の数と負の数の加減乗除
・正の数と負の数の加法、減法(足し算と引き算)
小学校では正の数どうしの足し算と引き算だけでした。中学では正の数と負の数それぞれで足し算と引き算が可能です。符号が重なるところは()をつけます。
基本の考え方は、0を起点に、「+ならば右へ移動」「-ならば左へ移動」です。初めは数直線を引いて考えましょう。感覚でできるようになるまで繰り返して練習することが大切です。
・正の数と負の数の乗法、除法(かけ算とわり算)
負の数をかける(かけられる)と、答えはかけられる(かける)数の符号と逆になります。★は特に間違えやすいので何度も解いて覚えましょう。
・正×正=正
・正×負=負
・負×正=負
・負×負=正★
この符号のルールは、わり算でも同じです。
・正÷正=正
・正÷負=負
・負÷正=負
・負÷負=正★
(3)指数・四則演算のきまり・分配法則
同じ数をいくつかかけたとき、その数の「累乗」とよびます。数字の右肩に小さく、かけた回数を書き、これを「指数」と呼びます。
(例)3×3×3×3=34 ※「3の4乗」と読みます。
(4)素数と素因数分解
約数が1とその数自身の2つしか持たない数を「素数」と呼びます(1は素数に含みません)。一桁の数のうち、素数は2,3、5、7です。
自然数を、素数だけの積の形で表すことを、「素因数分解」といいます。
(例)91=9×9=3×3×3×3=34
(7)比例と反比例の利用(文章題など)
演習問題を解いて練習しましょう。
5 平面図形
(1)直線と図形
・直線、線分、半直線の意味
まっすぐに限りなく伸びる線を「直線」といいます。2つの点を通る直線は1本だけです。点Aと点Bを通る直線を「直線AB」と呼びます。また片側だけに無限に伸ばしたものを「半直線AB」といいます。
直線も半直線も無限ですが、AからBまでで切り取られた部分を「線分AB」とよびます。
線分を二等分する点を「中点」といいます。また直線に垂直に交わる直線を「垂線」といいます。
線分の中点を通る、その線分に垂直な直線を「垂直二等分線」といいます。
・角の表し方
角は、∠の記号を使って表します。2本の半直線OA、OBではさまれた間を∠AOBと表します。
・垂直な2直線、平行な2直線の意味と表し方
垂直な2直線はAB⊥CD、並行な2直線はAB//CDと書きます。
・三角形の表し方
三角形は頂点を続けて読んで、「三角形ABC」といいます。△ABCと表します。
(2)空間における平面と直線
空間内における平面や直線の位置関係と、平面が一つに確定する条件などを学びます。
・平面が一つに決定する条件
①1直線上に無い3点があるとき
②直線と1点があるとき
③平行な2直線があるとき
④交わる2つの直線があるとき
・空間内の2直線の位置関係
空間内の2つの直線の位置関係には「交わる」「平行」「ねじれの位置」の3つがあります。
上の「平面が一つに決定する」条件のとおり、「交わる」と「平行」の場合は、同じ一つの平面上にあることになります。
また同一平面上になく、交わりもしていないものは「ねじれ」の位置関係となります。
・空間内の直線と平面の位置関係
「平行」「交わる」「平面上にある」の3つになります。
・空間内の2つの平面の位置関係
「平行」または「交わる」の2つになります。
中1数学 勉強のコツ

中1の数学は「いま、自分は何の作業をしているのか」を考えながら解く学習が効果的です。高校入試、その先の高校数学まで使える数学学習のコツを3つ、解説します。
(1)計算は「考えなくても手が動く」レベルを目指す
「つまりどういうことか」と本質を理解したら、演習により単元の完全習得を目指します。計算は考えなくても手が動くレベルを目指し、反復学習に取り組んでください。
定期テストや高校入試において、数学は「時間との勝負」になりやすい教科です。第1問で出される計算に手こずっていては、高得点獲得は見込めません。またどの単元を学ぶにせよ、計算は数学の基本となる力です。
数式を見た瞬間に手が動きだし、正解を導ける完成度を目指し、トレーニングしていきましょう。
(2)練習する問題は例題・練習問題レベルから徐々に上げる
「テストで配点が高い応用問題こそ得点すべき」といきなり難しい問題から始めると、お子さんを数学嫌いにする原因になります。まずはお子さんが自信を持って正解できる、教科書例題レベルから始めましょう。その後、定期テストに向けて章末問題、応用問題…と、取り組む問題バリエーションを増やします。
例題・練習問題は、「いまどのような処理をしているのか」「解答までの道のりの何合目くらいにいるか」など、お子さんが問題を解きながら自分を客観視する余裕が持てる点もメリットです。
(3)毎日勉強する習慣を身につける
生活リズムが小学生までとはガラリと変わる中1は、勉強の習慣づけをしやすいタイミングでもあります。数学の宿題や自主学習を利用し、毎日勉強する習慣をつけておきましょう。
数学は、1日サボると知識の定着度が大きく下がる教科ともいわれます。とりわけ計算のスピード・主熟度は繰り返しと継続がつくるため、できるだけ毎日取り組むようにしてください。
「帰宅してすぐ」「夕食後」など机に向かいやすいタイミングを決め、勉強に促すのも良い方法です。
まとめ
中1数学で習う単元の内容について解説しました。
中1の数学は入口であり、今後の学びにとって非常に重要です。難しいと感じたら、苦手意識ができる前に早めに塾などを利用し、対策することをおすすめします。
「塾探しの窓口」を使うとお子様の学習状況、性格やスケジュールに合った塾がエリアごとに探せます。上手に利用してお子様の数学の学習にお役立てください。


